前言#
🔜什么是SkyWalking?🔚
是一款优秀的国产 APM 工具。
分布式系统的应用程序性能监视工具,专为微服务、云原生架构和基于容器(Docker、K8s、Mesos)架构而设计。
提供分布式追踪、服务网格遥测分析、度量聚合和可视化一体化解决方案。
SkyWalking 架构分为 UI、OAP、存储、探针 4 部分。
其中 UI 为SkyWalking UI :负责提供控台、查看链路等等;(可视化显示)
OAP 为SkyWalking OAP :负责接收 Agent(探针) 发送的 Tracing 数据信息,然后进行分析(Analysis Core) ,存储到外部存储器 ( Storage ),最终提供查询 ( Query ) 功能。(数据分析)
存储为 Tracing 数据存储。目前支持 ES、MySQL、Sharding Sphere、TiDB、H2 多种存储器。而我们目前采用的是 ES ,主要考虑是 SkyWalking 开发团队自己的生产环境采用 ES 为主。(存储数据)
探针为 Agent :负责从应用中,收集链路信息,发送给 SkyWalking OAP 服务器。目前支持 SkyWalking、Zikpin、Jaeger 等提供的 Tracing 数据信息。而我们目前采用的是,SkyWalking Agent 收集 SkyWalking Tracing 数据,传递给服务器。(收集数据)
环境准备#
(1)使用脚本安装 docker、docker-compose
bash <(curl -sSL https://linuxmirrors.cn/docker.sh)
(2)配置镜像加速
vi /etc/docker/daemon.json
{
"data-root": "/data/dockerData",
"registry-mirrors": ["https://registry.cn-hangzhou.aliyuncs.com",
"https://huecker.io",
"https://docker.rainbond.cc",
"https://dockerhub.timeweb.cloud",
"https://dockerhub.icu",
"https://docker.registry.cyou",
"https://docker-cf.registry.cyou",
"https://dockercf.jsdelivr.fyi",
"https://docker.jsdelivr.fyi",
"https://dockertest.jsdelivr.fyi",
"https://mirror.aliyuncs.com",
"https://dockerproxy.com",
"https://mirror.baidubce.com",
"https://docker.m.daocloud.io",
"https://docker.nju.edu.cn",
"https://docker.mirrors.sjtug.sjtu.edu.cn",
"https://docker.mirrors.ustc.edu.cn",
"https://mirror.iscas.ac.cn",
"https://docker.rainbond.cc",
"https://docker.kubesre.xyz"],
"log-driver":"json-file",
"log-opts":{"max-size" :"50m","max-file":"3"}
}
(3)启动 docker 服务
systemctl start docker
systemctl enable docker
systemctl status docker
(4)设置与内存映射相关的内核参数为 262144,查看应用到系统的内核参数。
echo "vm.max_map_count=262144" >> /etc/sysctl.conf
sysctl -p
部署步骤#
(1)创建部署文件所需的存储目录
mkdir -p /data/elasticsearch/data /data/elasticsearch/logs /data/skywalking/oap
chmod -R 777 /data/elasticsearch
(2)创建临时 skywalking-oap-server 容器,将 skywalking 配置文件拷贝到映射目录中。
cd /data/skywalking/oap
# 创建临时skywalking-oap-server容器,拷贝skywalking配置文件到主机目录
docker run -itd --name=oap-temp apache/skywalking-oap-server:9.5.0
docker cp oap-temp:/skywalking/config/. .
docker rm -f oap-temp
(3)修改 skywalking 的配置文件 application.yml,将 elasticsearch 作为数据存储。
vi application.yml
storage:
selector: ${SW_STORAGE:elasticsearch} #将h2修改为elasticsearch
elasticsearch:
namespace: ${SW_NAMESPACE:""}
clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:本机ip:9200} #localhost修改为主机ip
protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:3000}
socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
responseTimeout: ${SW_STORAGE_ES_RESPONSE_TIMEOUT:15000}
numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
user: ${SW_ES_USER:"elastic"} #填写es的账号
password: ${SW_ES_PASSWORD:"elastic"} #填写es密码
trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
(4)创建 docker-compose 文件,编排部署 skywalking、es、skywalking-ui。
vi skywalking.yml
services:
elasticsearch:
image: elasticsearch:8.15.0
container_name: elasticsearch
restart: always
environment:
- discovery.type=single-node
- ES_JAVA_OPTS=-Xms1g -Xmx1g
- ELASTIC_PASSWORD=elastic
- TZ=Asia/Shanghai
ports:
- "9200:9200"
- "9300:9300"
healthcheck:
test: [ "CMD-SHELL", "curl --silent --fail -u elastic:elasitc localhost:9200/_cluster/health || exit 1" ]
interval: 30s
timeout: 10s
retries: 3
start_period: 10s
logging:
driver: "json-file"
options:
max-size: "50m"
max-file: "3"
volumes:
- /data/elasticsearch/data:/usr/share/elasticsearch/data
- /data/elasticsearch/logs:/usr/share/elasticsearch/logs
- /data/elasticsearch/plugins:/usr/share/elasticsearch/plugins
networks:
skywalking-network:
ipv4_address: 172.20.110.11
ulimits:
memlock:
soft: -1
hard: -1
skywalking-oap:
image: apache/skywalking-oap-server:9.5.0
container_name: skywalking-oap
restart: always
ports:
- "11800:11800"
- "12800:12800"
- "1234:1234"
healthcheck:
test: [ "CMD-SHELL", "/skywalking/bin/swctl health" ]
interval: 30s
timeout: 10s
retries: 3
start_period: 10s
depends_on:
elasticsearch:
condition: service_healthy
environment:
- SW_STORAGE=elasticsearch
- SW_HEALTH_CHECKER=default
- TZ=Asia/Shanghai
- JVM_Xms=512M
- JVM_Xmx=1024M
- SW_STORAGE_ES_CLUSTER_NODES=本机ip:9200
volumes:
- /data/skywalking/oap:/skywalking/config
networks:
skywalking-network:
ipv4_address: 172.20.110.12
skywalking-ui:
image: apache/skywalking-ui:9.5.0
container_name: skywalking-ui
restart: always
environment:
- SW_OAP_ADDRESS=http://本机ip:12800
- SW_ZIPKIN_ADDRESS=http://本机ip:9412
- TZ=Asia/Shanghai
ports:
- "8080:8080"
depends_on:
skywalking-oap:
condition: service_healthy
networks:
skywalking-network:
ipv4_address: 172.20.110.13
networks:
skywalking-network:
driver: bridge
ipam:
config:
- subnet: 172.20.110.0/24
docker compose -f skywalking.yml up -d
Skywalking 可通过以下两种方式连接 es,作为存储。(使用其中一种即可)
Skywalking 通过 HTTP 认证连接 Elasticsearch
#关闭es的ssl证书认证
docker exec -it elasticsearch bash -c ' sed -i "s/ enabled: true/ enabled: false/g" /usr/share/elasticsearch/config/elasticsearch.yml'
docker exec -it elasticsearch bash -c 'cat /usr/share/elasticsearch/config/elasticsearch.yml'
docker restart elasticsearch
docker restart skywalking-oap
Skywalking 通过 HTTPS SSL 认证连接 Elasticsearch
(1) 将 es 的 crt 和 key 证书文件,转化为 p12 格式
openssl pkcs12 -export -in ca.crt -inkey ca.key -out es.p12 -name esca -CAfile es.crt
输入两次 keypass,其中 - name 参数为别名。
openssl pkcs12 -export -in ca.crt -inkey ca.key -out es.p12 -name esca -CAfile es.crt
Enter Export Password:
Verifying - Enter Export Password:
(2)将 p12 格式证书转化为 jks 证书
安装 JDK。keytool
是 JDK 中的一部分,需要安装 JDK,进行证书转化操作。
yum install - java-11-openjdk-devel
storepass 参数为 jks 证书密码,srcstorepass 参数为 p12 证书密码。
keytool -importkeystore -v -srckeystore es.p12 -srcstoretype PKCS12 -srcstorepass wasd2345 -deststoretype JKS -destkeystore es.jks -storepass qiswasd2345
storage:
selector: ${SW_STORAGE}
elasticsearch:
namespace: ${SW_NAMESPACE:""}
clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:es 所在服务器地址:443}
protocol: 443${SW_STORAGE_ES_HTTP_PROTOCOL:"https"}
connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:3000}
socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
responseTimeout: ${SW_STORAGE_ES_RESPONSE_TIMEOUT:15000}
numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
user: ${SW_ES_USER:"es 用户名"}
password: ${SW_ES_PASSWORD:"es 密码"}
trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:"jks 证书地址"}
trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:"jks 证书密码"}
开启 Linux 监控#
安装 Prometheus node-exporter 从 VM 收集指标数据。(源码方式)#
yum install -y wget
wget https://github.com/prometheus/node_exporter/releases/download/v1.8.2/node_exporter-1.8.2.linux-amd64.tar.gz
tar -xvzf node_exporter-1.8.2.linux-amd64.tar.gz
cd
mv node_exporter-1.8.2.linux-amd64/node_exporter /usr/sbin/
cd /usr/sbin/
./node_exporter
验证是否运行
curl http://localhost:9100/metrics
创建 node_exporter 服务文件
vi /usr/lib/systemd/system/node_exporter.service
[Unit]
Description=node exporter service
Documentation=https://prometheus.io
After=network.target
[Service]
Type=simple
User=root
Group=root
#node_exporter的存放位置
ExecStart=/usr/sbin/node_exporter
Restart=on-failure
[Install]
WantedBy=multi-user.target
重新加载系统管理器配置文件,启动 node_exporter 服务并设置开机自启
systemctl daemon-reload
systemctl start node_exporter
systemctl enable node_exporter
systemctl status node_exporter
安装 Prometheus node-exporter(容器方式)#
services:
node-exporter:
image: quay.io/prometheus/node-exporter
container_name: node-exporter
volumes:
- /proc:/host/proc:ro
- /sys:/host/sys:ro
- /:/rootfs:ro
command:
- '--path.procfs=/host/proc'
- '--path.rootfs=/rootfs'
- '--path.sysfs=/host/sys'
restart: always
environment:
- TZ=Asia/Shanghai
ports:
- 9100:9100
networks:
linux_exporter:
ipv4_address: 172.20.104.11
networks:
linux_exporter:
driver: bridge
ipam:
config:
- subnet: 172.20.104.0/24
安装 OpenTelemetry Collector#
创建 OpenTelemetry Collector 配置文件
mkdir /data/opentelemetry-collector
vi /data/opentelemetry-collector/config.yaml
receivers:
prometheus:
config:
scrape_configs:
- job_name: 'vm-monitoring' #要与skywalking-oap中的otel-rules的vm.yaml中的名称保持一致
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9100']
labels:
host_name: 10.10.2.145
service: oap-server
processors:
batch:
exporters:
otlp:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging:
loglevel: debug
service:
pipelines:
metrics:
receivers: [prometheus]
processors: [batch]
exporters: [otlp, logging]
services:
otelcol:
image: otel/opentelemetry-collector
container_name: otelcol
restart: always
environment:
- TZ=Asia/Shanghai
volumes:
- /data/opentelemetry-collector/config.yaml:/etc/otelcol/config.yaml
networks:
opentelemetry:
ipv4_address: 172.20.101.11
networks:
opentelemetry:
driver: bridge
ipam:
config:
- subnet: 172.20.101.0/24
opentelemetry-collector 最新镜像配置文件变更在最新版的容器镜像中(0.113.0)中使用导出器 exporters 中使用 debug 代替 logging。
即在 v0.86.0 版本之前使用 loggingexporters:
otlp:
endpoint: ip + 端口
tls:
insecure: true
logging:
loglevel: debug之后使用 debug
exporters:
otlp:
endpoint: ip + 端口
tls:
insecure: true
debug:
verbosity: detailed
SkyWalking 服务自监控开启#
开启后端遥测,在 skywalking-oap 的配置文件 application.yml 中,找到 promethus 的部分,修改参数。
telemetry:
selector: ${SW_TELEMETRY:prometheus} #将none修改为prometheus
none:
prometheus:
host: ${SW_TELEMETRY_PROMETHEUS_HOST:0.0.0.0}
port: ${SW_TELEMETRY_PROMETHEUS_PORT:1234}
sslEnabled: ${SW_TELEMETRY_PROMETHEUS_SSL_ENABLED:false}
sslKeyPath: ${SW_TELEMETRY_PROMETHEUS_SSL_KEY_PATH:""}
sslCertChainPath: ${SW_TELEMETRY_PROMETHEUS_SSL_CERT_CHAIN_PATH:""}
在 OpenTelemetry Collector 配置文件中加入自监控的参数
receivers:
prometheus:
config:
scrape_configs:
- job_name: 'vm-monitoring'
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9100']
labels:
host_name: 10.10.2.145
service: skywalking-oap-server
prometheus/2: #新增
config:
scrape_configs:
- job_name: 'skywalking-so11y' #要与skywalking-oap中的otel-rules的oap.yaml中的名称保持一致
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:1234'] #端口为1234
labels:
host_name: 10.10.2.145_self
service: skywalking-oap
processors:
batch:
batch/2:
exporters:
otlp:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging:
loglevel: debug
otlp/2:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging/2:
loglevel: debug
service:
pipelines:
metrics:
receivers: [prometheus, prometheus/2]
processors: [batch, batch/2]
exporters: [otlp, otlp/2, logging, logging/2]
依次重启 otelcol 容器和 skywalking-oap,查看是否生成自监控。
开启数据库 MySQL/MariaDB 监控#
(1)部署 mysqld_exporter
services:
mysqld_exporter:
image: prom/mysqld-exporter
container_name: mysqld_exporter
restart: always
environment:
- TZ=Asia/Shanghai
ports:
- "9104:9104"
command:
- "--mysqld.username=user:password" #用户名和密码
- "--mysqld.address=10.10.2.145:3306" #ip和端口号
networks:
sw-mysql:
ipv4_address: 172.20.102.11
networks:
sw-mysql:
driver: bridge
ipam:
config:
- subnet: 172.20.102.0/24
(2) 在 OpenTelemetry Collector 配置文件中 mysql 的监控参数
receivers:
prometheus:
config:
scrape_configs:
- job_name: 'vm-monitoring'
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9100']
labels:
host_name: 10.10.2.145
service: skywalking-oap-server
prometheus/2:
config:
scrape_configs:
- job_name: 'skywalking-so11y'
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:1234']
labels:
host_name: 10.10.2.145_self
service: skywalking-oap
prometheus/3: #mysql、mariadb的监控部分
config:
scrape_configs:
- job_name: 'mysql-monitoring' #要与skywalking-oap中的otel-rules/mysql目录中的yaml文件中的名称保持一致
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9104']
labels:
host_name: mariadb-monitoring
processors:
batch:
batch/2:
batch/3:
exporters:
otlp:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging:
loglevel: debug
otlp/2:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging/2:
loglevel: debug
otlp/3:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging/3:
loglevel: debug
service:
pipelines:
metrics:
receivers:
- prometheus
- prometheus/2
- prometheus/3
processors:
- batch
- batch/2
- batch/3
exporters:
- otlp
- otlp/2
- otlp/3
- logging
- logging/2
- logging/3
依次重启 otelcol 容器和 skywalking-oap,查看是否生成 mysql 或 mariadb 的监控数据。
开启 Elasticsearch 监控#
(1)部署 elasticsearch_exporter
services:
elasticsearch_exporter:
image: quay.io/prometheuscommunity/elasticsearch-exporter:latest
container_name: elasticsearch_exporter
restart: always
environment:
- TZ=Asia/Shanghai
ports:
- "9114:9114"
command:
#- '--es.uri=http://elastic:[email protected]:9200' #es使用http协议
- '--es.uri=https://elastic:[email protected]:9200'
- "--es.ssl-skip-verify" #连接到es时跳过SSL验证
networks:
es_exporter:
ipv4_address: 172.20.103.11
networks:
es_exporter:
driver: bridge
ipam:
config:
- subnet: 172.20.103.0/24
(2)在 OpenTelemetry Collector 配置文件中 es 的监控参数
receivers:
prometheus:
config:
scrape_configs:
- job_name: 'elasticsearch-monitoring'
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9114']
labels:
host_name: elasticsearch-monitoring
processors:
batch:
exporters:
otlp:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging:
loglevel: debug
service:
pipelines:
metrics:
receivers:
- prometheus
processors:
- batch
exporters:
- otlp
- logging
依次重启 otelcol 容器和 skywalking-oap,查看是否生成 es 的监控数据。
开启数据库 PostgreSQL 监控#
(1)部署 postgres-exporter
services:
postgres-exporter:
image: quay.io/prometheuscommunity/postgres-exporter
container_name: postgres-exporter
restart: always
environment:
TZ: "Asia/Shanghai"
DATA_SOURCE_URI: "localhost:5432/postgres?sslmode=disable"
DATA_SOURCE_USER: "postgres"
DATA_SOURCE_PASS: "password"
ports:
- "9187:9187"
networks:
sw-pgsql:
ipv4_address: 172.20.105.11
networks:
sw-pgsql:
driver: bridge
ipam:
config:
- subnet: 172.20.105.0/24
(2)在 OpenTelemetry Collector 配置文件中 postgres sql 的监控参数
receivers:
prometheus:
config:
scrape_configs:
- job_name: 'postgresql-monitoring'
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9187']
labels:
host_name: postgresql-monitoring
processors:
batch:
exporters:
otlp:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging:
loglevel: debug
service:
pipelines:
metrics:
receivers:
- prometheus
processors:
- batch
exporters:
- otlp
- logging
依次重启 skywalking-oap 容器和 otelcol,查看是否生成 postgres sql 的监控数据。
开启数据库 MongoDB 监控#
(1)部署 mongodb_exporter
services:
mongodb_exporter:
image: percona/mongodb_exporter:0.40
container_name: mongodb_exporter
restart: always
ports:
- "9216:9216"
environment:
- TZ=Asia/Shanghai
- MONGODB_URI=mongodb://user:[email protected]:27017/?authSource=admin
command:
- --collect-all
- --web.listen-address=:9216
networks:
sw-mongodb:
ipv4_address: 172.20.106.11
networks:
sw-mongodb:
driver: bridge
ipam:
config:
- subnet: 172.20.106.0/24
(2) 在 OpenTelemetry Collector 配置文件中 mongodb 的监控参数
receivers:
prometheus:
config:
scrape_configs:
- job_name: 'mongodb-monitoring'
scrape_interval: 5s
static_configs:
- targets: ['10.10.2.145:9216']
labels:
host_name: mongodb-monitoring
processors:
batch:
exporters:
otlp:
endpoint: 10.10.2.145:11800
tls:
insecure: true
logging:
loglevel: debug
service:
pipelines:
metrics:
receivers:
- prometheus
processors:
- batch
exporters:
- otlp
- logging
.NET 项目服务链路追踪#
安装 SkyWalking .NET Core Agent(Windows 环境)#
(1)在 Visual Studio 中的项目中安装nuget
包SkyAPM.Agent.AspNetCore
。
(2)在launchSettings.json
文件中新增环境变量"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "SkyAPM.Agent.AspNetCore"
和 "SKYWALKING__SERVICENAME": "服务名(与执行的dll程序的名称一致)"
。
"profiles": {
"http": {
"commandName": "Project",
"dotnetRunMessages": true,
"launchBrowser": true,
"applicationUrl": "http://localhost:5205",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
//新增环境变量
"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "SkyAPM.Agent.AspNetCore",
"SKYWALKING__SERVICENAME": "服务名(与执行的dll程序的名称一致)"
}
},
"https": {
"commandName": "Project",
"dotnetRunMessages": true,
"launchBrowser": true,
"applicationUrl": "https://localhost:7105;http://localhost:5205",
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
//新增环境变量
"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "SkyAPM.Agent.AspNetCore",
"SKYWALKING__SERVICENAME": "服务名(与执行的dll程序的名称一致)"
}
},
"IIS Express": {
"commandName": "IISExpress",
"launchBrowser": true,
"environmentVariables": {
"ASPNETCORE_ENVIRONMENT": "Development",
//新增环境变量
"ASPNETCORE_HOSTINGSTARTUPASSEMBLIES": "SkyAPM.Agent.AspNetCore",
"SKYWALKING__SERVICENAME": "服务名(与执行的dll程序的名称一致)"
}
}
}
,
(3)在 Program.cs 中添加配置参数。
//SkyApm
builder.Services.AddSkyApmExtensions();
Environment.SetEnvironmentVariable
("ASPNETCORE_HOSTINGSTARTUPASSEMBLIES", "SkyAPM.Agent.AspNetCore");
Environment.SetEnvironmentVariable("SKYWALKING__SERVICENAME", "服务名(与执行的dll程序的名称一致)");
(4)添加 skyapm.json 文件,添加方式有两种:
一是在 dll 运行程序的同目录下创建 skyapm.json,并写入以下内容。
{
"SkyWalking": {
"ServiceName": "服务名(与执行的dll程序的名称一致)",
"Namespace": "",
"HeaderVersions": [
"sw8"
],
"Sampling": {
"SamplePer3Secs": -1,
"Percentage": -1.0
},
"Logging": {
"Level": "Information",
"FilePath": "logs\\skyapm-{Date}.log"
},
"Transport": {
"Interval": 3000,
"ProtocolVersion": "v8",
"QueueSize": 30000,
"BatchSize": 3000,
"gRPC": {
"Servers": "SkyWalking服务ip:11800",
"Timeout": 10000,
"ConnectTimeout": 10000,
"ReportTimeout": 600000,
"Authentication": ""
}
}
}
}
二是在 Visual Studio 的控制台中输入命令创建 skyapm.json。
dotnet tool install -g SkyAPM.DotNet.CLI
dotnet skyapm config 服务名(与执行的dll程序的名称一致) SkyWalking服务ip:11800
(5)配置完成后,在运行的服务器中加入环境变量
方式一:在服务器添加
vi ~/.bashrc
export ASPNETCORE_ENVIRONMENT=development
export ASPNETCORE_HOSTINGSTARTUPASSEMBLIES=SkyAPM.Agent.AspNetCore
export SKYWALKING__SERVICENAME=服务名
#使得配置生效
source ~/.bashrc
方式二:在容器中添加,可在 Dockerfile 文件中添加
FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS base
......
ENV ASPNETCORE_ENVIRONMENT=development
ENV ASPNETCORE_HOSTINGSTARTUPASSEMBLIES=SkyAPM.Agent.AspNetCore
ENV SKYWALKING__SERVICENAME=服务名
#容器入口点
ENTRYPOINT ["dotnet", "xxx"]
(6)访问.NET 项目,查看 Skywalking 中常规服务 - 服务中生成的服务监控。(效果图在最后)
安装 SkyWalking .NET Core Agent(Linux 环境)#
适用于在 Linux 上创建的.NET 项目
(1)安装 SkyWalking .NET Core Agent
dotnet add package SkyAPM.Agent.AspNetCore
export ASPNETCORE_HOSTINGSTARTUPASSEMBLIES=SkyAPM.Agent.AspNetCore
export SKYWALKING__SERVICENAME=服务名(与执行的dll程序的名称一致)
(2)安装 SkyAPM.DotNet.CLI,用于生成 skyapm.json
dotnet tool install -g SkyAPM.DotNet.CLI
dotnet skyapm config 服务名(与执行的dll程序的名称一致) SkyWalking服务ip:11800
(3)配置完成后,在运行的服务器中加入环境变量
方式一:在服务器添加
vi ~/.bashrc
export ASPNETCORE_ENVIRONMENT=development
export ASPNETCORE_HOSTINGSTARTUPASSEMBLIES=SkyAPM.Agent.AspNetCore
export SKYWALKING__SERVICENAME=服务名
#使得配置生效
source ~/.bashrc
方式二:在容器中添加,可在 Dockerfile 文件中添加
FROM mcr.microsoft.com/dotnet/aspnet:8.0 AS base
......
ENV ASPNETCORE_ENVIRONMENT=development
ENV ASPNETCORE_HOSTINGSTARTUPASSEMBLIES=SkyAPM.Agent.AspNetCore
ENV SKYWALKING__SERVICENAME=服务名
#容器入口点
ENTRYPOINT ["dotnet", "xxx"]
(4)访问.NET 项目,查看 Skywalking 中常规服务 - 服务中生成的服务监控。
接入前端监控#
(1)项目中添加 skywalking-client-js 包
npm install skywalking-client-js --save
(2)在 vue.config.js 中配置代理
proxy:{
'/browser': {
target:'SkyWalking服务ip:12800',//这里是路由和报错报告的代理
changeOrigin: true
},
'/v3':{
target:'SkyWalking服务ip:12800',
changeOrigin: true//这里是追踪报告的代理
}
}
(3)在 main.js 中接入 skywalking-client-js
//skywalking监控系统
import ClientMonitor from 'skywalking-client-js';
//注册skywalking
ClientMonitor.register({
service: '服务名',//服务名称
serviceVersion:'',//应用版本号
traceSDKInternal:true,//追踪sdk
pagePath: location.href,//当前路由地址
useFmp: true
});
(4) 在对应业务系统的服务器中,在对应发布 nignx 代理服务中加入对应的代理配置。
location /browser/ {
proxy_pass http://SkyWalking服务ip:12800/browser/;
client_max_body_size 1000M;
}
location /v3/ {
proxy_pass http://SkyWalking服务ip:12800/v3/;
client_max_body_size 1000M;
}